基于CSP的运动想象EEG分类任务实战

news/2024/5/19 18:19:27 标签: python, 公开数据集, BCI, EEG, 机器学习, 分类

基于运动想象的公开数据集:Data set IVa (BCI Competition III)1
数据描述参考前文:https://blog.csdn.net/qq_43811536/article/details/134224005?spm=1001.2014.3001.5501
EEG 信号时频空域分析参考前文:https://blog.csdn.net/qq_43811536/article/details/134273470?spm=1001.2014.3001.5501
基于CSP的运动想象 EEG 特征提取和可视化参考前文:https://blog.csdn.net/qq_43811536/article/details/134296308?spm=1001.2014.3001.5501
CSP(Common Spatial Patterns)——EEG特征提取方法详解参考前文:https://blog.csdn.net/qq_43811536/article/details/134296840?spm=1001.2014.3001.5501

本文使用公开数据集 Data set IVa 中的部分被试数据,数据已公开可以从网盘获取:
链接:https://pan.quark.cn/s/5425ee5918f4
提取码:hJFz


目录

  • 1. 实验介绍
  • 2. 运动想象分类
  • 3. 核心Python代码


1. 实验介绍

本任务的实验数据来自一名健康受试者,代号al。受试者在视觉提示出现后3.5s内完成以下3个运动想象中的一个:(L)左手,(R)右手,(F)右脚。分类任务中的数据只包括了右手和右脚两类,共280个试次。实验过程中使用脑电帽记录了118个通道的EEG信号,电极位置如图1所示。采集到的EEG信号首先经过带通滤波(0.05-200Hz),再经过数字化和下采样,得到采样率为100Hz的信号。

在这里插入图片描述

图1 电极位置

2. 运动想象分类

基于CSP特征,我们使用LDA分类器进行分类,并进行十折交叉验证以评估性能。评价指标为测试集准确率,即分类正确的试次占总试次的比例。

2.1 分类性能

我们比较了不同的带通滤波器和时间窗的结果。

  • 图1中,横轴为时间窗相较于提示出现的起始时间。不同的折线代表了不同窗长。我们发现在3s的窗长能获得更高的分类准确率,时间窗从提示出现后0.5s开始效果更好,分类准确率达到1。
  • 图2展示了滤波器截止频率对于准确率的影响,可以看到低频截止频率在10-12Hz时准确率能达到1。
  • 我们还比较了LDA分类器与线性回归(LR)和随机森林(RF)方法的性能,结果如表1所示。LDA分类器的准确率高于LR和RF,但分类性能都较高。
  • 最后我们去掉提取CSP特征的模块,直接对原始信号使用LDA分类器,结果如图3所示。去除掉提取CSP模块后,分类准确率由1下降至0.6左右。

在这里插入图片描述

图1 时间窗搜索结果。横轴为时间窗相较于提示出现的起始时间。不同的折线代表了不同窗长。

在这里插入图片描述

图2 滤波器参数搜索结果。横轴为低频截止频率,带宽固定为16Hz。

表1 不同分类器的分类结果
方法准确率
LDA1
LR0.99±0.01
RF0.99±0.01

在这里插入图片描述

图3 消融实验。直接对原始信号使用LDA性能较差。

2.2 结论

实验表明,右手和右脚运动想象的EEG差异集中于μ节律信号(8-15Hz)和β节律(18-24Hz),体现在C3和C4通道,即感觉运动区。使用CSP算法提取到的特征具有较高的线性可分性,使用LDA分类器可以实现准确率为1,能有效区分这两类运动想象。实验发现用于分类任务的时间窗范围和带通滤波范围对分类准确率具有较大影响,最优时间窗为提示出现后0.5s-3.5s,最优频带为12Hz-28Hz。


3. 核心Python代码

  • 部分变量说明:
    • raw:由 mne.io.RawArray() 函数创建,代表原始EEG数据
    • epochs:由 mne.Epochs() 函数创建,代表一个事件(event)对应的所有数据,在该数据集中一个事件即 “右手”或者“脚”的想象运动
python"># BP Filter
l_fr, h_fr = 12.0, 28.0
tMin, tMax = 0.5, 3.5

# MNE object
info = mne.create_info(
    ch_names=[i[0] for i in ch_name],
    sfreq=eeg_fs,
    ch_types='eeg')
pos_dic = dict(zip(info.ch_names, ch_pos))
montage = mne.channels.make_dig_montage(pos_dic)

info.set_montage(montage)
raw = mne.io.RawArray(eeg_data.T, info)
# Apply band-pass filter
raw.filter(l_fr, h_fr, fir_design="firwin", skip_by_annotation="edge")

# Decoding


events = np.vstack((cues_pos, np.zeros(len(cues_pos)), target_label[0, :])).T.astype(int)
picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude="bads")

# Epochs
epochs = mne.Epochs(
    raw,
    events,
    events_id,
    tMin,
    tMax,
    proj=True,
    picks=picks,
    baseline=None,
    preload=True,
)

# Prepare data for training
x = epochs.get_data()
y = target_label[0, :]

# ten-fold cross-validation
cv = ShuffleSplit(10, test_size=test_r, random_state=42)

# Classification with LDA on CSP features
lda = LinearDiscriminantAnalysis()
csp = CSP(n_components=10, reg=None, log=True, norm_trace=False)
clf = Pipeline([("CSP", csp), ("LDA", lda)])

from sklearn.metrics import accuracy_score

train_x, test_x = x[:224], x[224:]
train_y, test_y = y[:224], y[224:]

clf.fit(train_x,train_y)

pred1 = clf.predict(train_x)
accuracy1 = accuracy_score(train_y,pred1)
print('在训练集上的精确度: %.4f'%accuracy1)

pred2 = clf.predict(test_x)
accuracy2 = accuracy_score(test_y,pred2)
print('在测试集上的精确度: %.4f'%accuracy2)
python"># 模型比较
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier

lda = LinearDiscriminantAnalysis()
csp = CSP(n_components=10, reg=None, log=True, norm_trace=False)
clf_lda = Pipeline([("CSP", csp), ("LDA", lda)])
scores_lda = cross_val_score(clf_lda, x, y, cv=cv, n_jobs=None)

lr = LogisticRegression()
csp = CSP(n_components=10, reg=None, log=True, norm_trace=False)
clf_lr = Pipeline([("CSP", csp), ("LR", lr)])
scores_lr = cross_val_score(clf_lr, x, y, cv=cv, n_jobs=None)

rfc = RandomForestClassifier()
csp = CSP(n_components=10, reg=None, log=True, norm_trace=False)
clf_rfc = Pipeline([("CSP", csp), ("RFC", rfc)])
scores_rfc = cross_val_score(clf_rfc, x, y, cv=cv, n_jobs=None)
print(scores_lda, scores_lr, 'scores_svc', scores_rfc)
python"># Without CSP
lda = LinearDiscriminantAnalysis()
scores_lda_only = cross_val_score(lda, x.reshape(-1,118*301), y, cv=cv, n_jobs=None)
print(scores_lda_only)

plt.plot(scores_lda,'-o',linewidth=2)
plt.plot(scores_lda_only,'-d',linewidth=2)
plt.xlabel('Folds',fontsize=16)
plt.ylabel('Accuracy',fontsize=16)
plt.legend(['CSP+LDA','LDA'],fontsize=16)
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
plt.ylim([0,1.1])
plt.show()


  1. https://bbci.de/competition/iii/desc_IVa.html ↩︎


http://www.niftyadmin.cn/n/5163660.html

相关文章

Presentation Prompter 5.4.2(mac屏幕提词器)

Presentation Prompter是一款演讲辅助屏幕提词器软件,旨在帮助演讲者在公共演讲、主持活动或录制视频时更加流畅地进行演讲。以下是Presentation Prompter的一些特色功能: 提供滚动或分页显示:可以将演讲稿以滚动或分页的形式显示在屏幕上&a…

Pytorch R-CNN目标检测-汽车car

概述 目标检测(Object Detection)就是一种基于目标几何和统计特征的图像分割,它将目标的分割和识别合二为一,通俗点说就是给定一张图片要精确的定位到物体所在位置,并完成对物体类别的识别。其准确性和实时性是整个系统的一项重要能力。 R-CNN的全称是Region-CNN(区域卷积神经…

响应式成人高考自考教育机构网站模板源码下载带后台

模板信息: 模板编号:30558 模板编码:UTF8 模板分类:学校、教育、培训、科研 适合行业:教育机构类企业 模板介绍: 本模板自带eyoucms内核,无需再下载eyou系统,原创设计、手工书写DIVC…

【测开求职】面试题:计算机网络 精简版整理

本篇文章整理的是在秋招过程中遇到的计算机网络高频面试题,应付部分中小厂的测试开发工程师面试完全没有问题,如果时间充足的话,建议再看一下笔者的另外一篇文章:【测开求职】面试题:计算机网络 详细版整理,会让你对整个计算机网络有足够全面深刻的理解,亲测应付各个大厂…

spring 中 @Validated/@Valid

超级好的链接 添加链接描述

C#中基于.NET6的动态编译技术

前几天要解决动态计算问题,尝试着使用了不同的方法。问题是给定一个包含计算的字符串,在程序运行中得到计算结果,当时考虑了动态编译,在网上查了一些资料完成了这项功能,可是基于不同的.NET平台使用的编程代码相差比较…

关于electron中使用ffi-napi窗口遍历的过程及问题

使用环境:electorn19 、node16、ffi-napi、user32 前言:这里先提一嘴,windows api也是有32位和64位的区别的,因为我是要快速完成项目,就没用C写(不熟练),我想着直接用易语言写DLL&am…

postman中文乱码

在header中添加这两个: Content-Type application/json;charsetUTF-8 Accept application/json;charsetUTF-8