EEG-SEED数据集作者的---基线论文阅读和分析

news/2024/5/19 19:30:14 标签: 论文阅读, SEED, 脑电, EEG, EEG Emotion

《Investigating Critical Frequency Bands and Channels for EEG-based Emotion Recognition with Deep Neural Networks》

方法:

A.预处理根据被试的反应,只选择诱发目标情绪的实验时期进行进一步分析。

将原始脑电图数据降采样至200Hz采样率。目视检查脑电图信号,人工去除受肌电图和脑电图污染严重的记录。在实验中还记录了眼动图,并用于从记录的脑电图数据中识别闪烁伪影。为了滤除噪声和伪影,对EEG数据进行了0.3Hz至50Hz的带通滤波器处理。经过预处理后,我们提取了每部电影时长对应的脑电图片段。EEG数据的每个通道被划分为相同长度的1s周期,互不重叠。一个实验大约有3300个干净的年代。在脑电图数据的每个历元上进一步计算特征。所有信号处理均在Matlab软件中完成。

B.特征提取

一种称为微分熵(DE)[35]的高效特征,[36]扩展了香农熵的思想,用于度量连续随机变量[46]的复杂性。由于EEG数据的低频能量高于高频能量,因此DE具有区分EEG模式低频和高频能量的平衡能力,这是由Duan等人[36]首次引入到基于EEG的情绪识别中。原微分熵的计算公式定义为:

在这里插入图片描述

如果随机变量服从高斯分布N(µ,σ2),则微分熵可以简单地计算为:

在这里插入图片描述

针对特定的脑电信号序列,采用256点无重叠汉宁窗口(1s)的短时傅里叶变换提取脑电信号的5个频段。然后计算每个频带的微分熵。由于每个频带信号有62个通道,我们为一个样本提取了310维的微分熵特征。

[38]和[47]的研究表明,不对称的大脑活动(左右侧化和前后尾化)似乎对情绪处理有效。所以我们也计算不对称微分(DASM)和理性的不对称(RASM)特性[36]DE特征之间的差异和比率27双半球不对称电极(F₁,F7, F3, F T7, F C3, T7, P7, C3, T P7 CP3, P3, O1, AF3, F5、F7, F C5, F C1, C5, C1, CP5, CP1, P5, p1, P O7, P O5, P O3, CB1左脑,和F p2, F8, F4, F T8, F C4, T8, P8, C4, T P8 CP4, P4, O2, AF4, F6, F8, F C6, F C2, C6, C2, CP6, CP2, P6, p2, P O8, P O6, P O4,右半球CB2)。DASM和RASM分别定义为:

在这里插入图片描述

其中xleft t和Xright分别代表左右半球的电极对。我们将DCAU特征定义为23对额后电极(F T7-T P7、F C5-CP5、F C3-CP3、F C1-CP1、F CZ-CP Z、F C2-CP2、F C4-CP4、F C6-CP6、F T8-T P8、F7-P7、F5-P5、F3-P3、F1-P1、F Z-P Z、F2-P2、F4-P4、F6-P6、F8-P8、F P1-O1、F P2-O2、F P Z- oz、AF3-CB1和AF4-CB2) DE特征之间的差异。DCAU定义为:

在这里插入图片描述

其中,Xf rontal和Xposterior表示前后电极对。为了进行比较,我们还提取了常规功率谱密度(PSD)作为基线。PSD、DE、DASM、RASM和DCAU特征的尺寸分别为310、310、135、135和115。我们应用线性动态系统(LDS)方法进一步过滤不相关的成分,并考虑情绪状态的时间动态。

C.深度信念网络分类
深度信念网络是一个具有深度架构的概率生成模型,它使用隐藏变量[25],[29]来表征输入数据分布。DBN的每一层由一个受限玻尔兹曼机(RBM)组成,RBM包含可见单元和隐藏单元,如图2(a)所示。没有可见-可见的联系,也没有隐藏-隐藏的联系。可见单元和隐藏单元分别有一个偏置向量c和b.

DBN是通过将预定义数量的RBM堆叠在一起来构造的,其中低级RBM的输出是高级RBM的输入,如图2(b)所示。一种高效的贪婪分层算法用于预训练网络的每一层。

在RBM中,联合分布P(v, h;θ)除以可见单位v和隐藏单位h,给定模型参数θ,定义为能量函数E(v, h;θ)

在这里插入图片描述

其中Z 是归一化因子:

在这里插入图片描述

模型赋给可见向量v的边际概率为:

在这里插入图片描述

对于高斯(可见)-伯努利(隐)RBM,能量函数定义为:

在这里插入图片描述

其中wij为可见单元vi与隐藏单元hj之间的对称相互作用项,bi和aj为偏置项,I和J为可见和隐藏单元的个数。条件概率可以有效地计算为:

在这里插入图片描述

其中σ(x) =1 /(1 + exp(x)), vi取实值,服从均值PJ j=1 wijhj + bi,方差为1的高斯分布。

取对数似然对数p(v;θ),我们可以推导出调整RBM权值的更新规则为

在这里插入图片描述

其中Edata(vihj)是在训练集中观察到的期望,而Emodel(vihj)是在模型定义的分布下的相同期望。但Emodel(vihj)难以计算,因此使用梯度的对比散度近似,其中Emodel(vihj)被运行在数据处初始化的吉布斯采样器取代。有时权重更新中的动量被用于防止陷入局部极小值,正则化可以防止权重变得太大。

在这项工作中,训练分为三个步骤:
1)对每层进行无监督的预训练,
2)对所有层进行无监督的反向传播微调,
3)对所有层进行有监督的反向传播微调。对于无监督微调,展开n个rbm以形成一个2n−1有向编码器和解码器网络,该网络可以通过反向传播[25],[49]进行微调。图2(c)显示了展开的DBN的图形描述。训练这个深度自编码器的目标是学习每一层之间的权重和偏差,以便重建和输入尽可能接近。对于监督微调,在预训练DBN的顶部添加标签层,并通过误差反向传播更新权重。

在这里插入图片描述


http://www.niftyadmin.cn/n/25359.html

相关文章

Java复习—运算符

运算符 运算符:对字面量或者变量进行操作的符号 表达式:用运算符把字面量或者变量连接起来,符合Java语法的式子就可以称为表达式。 算数运算符 符号作用加法作用-减法作用*乘法作用/除法法作用%取模、取余 在代码中,如果有小数…

关于sql注入这一篇就够了

本文章根据b站迪总课程总结出来,若有不足请见谅 目录 本文章根据b站迪总课程总结出来,若有不足请见谅 存在sql注入条件 判断数据库类型 注入mysql思路 判断网站是否存在注入点 判断列名数量(字段数) 文件读写操作 网站路径获取方法 注入类型 按注入点数据…

JVM类加载机制-让你明明白白的了解类的执行流程

一、类加载运行过程1.1 类加载到jvm的流程当我们使用java命令运行某个类的main函数启动程序时,首先需要通过类加载器把主类加载到jvm里。1.2 loadClass的类加载过程其中loadClass的类加载过程有如下几步:加载 >> 验证 >> 准备 >> 解析…

你问我答|为什么说数据中心散热迎来拐点?

喜报!      “绿色领跑企业”      近期,戴尔荣获由中环联合认证中心(CEC)颁发的“绿色领跑企业”奖项,这是继“环保产品领跑者”之后的又一殊荣,恭喜戴尔!    作为全球领先的数字化解决方案供应商,戴尔将可持续发展置于一切工作的核心,以智能、高效的解决方案帮助…

setMouseTacking(true) 没有效果?

描述 一般来讲,我们希望实现在mouseMoveEvent中获取当前鼠标的位置,以触发一些自定义的鼠标hover特效。在这种情形下需要启动mouse tacking才能达到效果,原因是mouseMoveEvent默认是在鼠标按下后才会触发。>> QWidget::mouseMoveEvent…

【ROS自定义文件】自定义头文件及源文件的调用

本文记录ROS中的自定义文件的调用,主要包括自定义头文件和源文件的使用。 1 自定义C头文件的调用 注意这个文件目录的结构,尤其是 hello.h 这个自定义的头文件在 include/plumbing_head 文件夹之下,这个会直接影响后续头文件的引用。 hello.…

【Python 最全版(一)】—加解密、编码解码、进制转换、字符串转换 |持续更新|

点个赞留个关注吧!!《《请先安装这几个模块》》# Python 3.11.0 import hashlib import binascii import google_crc32c import zlib import base64 import urllib.parse import opencc import time from Crypto.Cipher import AES # 安装方法如下 # 打开…

【STL标准库 范型编程】学习笔记(1):C++学习网站、STL六大部件介绍

目录 简介C++学习网站STL六大部件学习来源结语简介 Hello! 非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ଘ(੭ˊᵕˋ)੭ 昵称:海轰 标签:程序猿|C++选手|学生 简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国…